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ABSTRACT 

Some of the major challenges in the design of new generation wireless mobile systems are the 

suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within a single 

user created by the multipath propagation. Both of these problems were addressed successfully 

in a recent design of A Mutually-Orthogonal User code-Receiver (AMOUR) for asynchronous or 

quasi-synchronous CDMA systems. AMOUR converts a multiuser CDMA system into parallel 

single-user systems regardless of the multipath and guarantees ISI mitigation irrespective of the 

channel null locations. However, the noise amplification at the receiver can be significant in some 

multipath channels. In this paper we propose to oversample the received signal as a way of improv- 

ing the performance of AMOUR systems. We design Fractionally-Spaced AMOUR (FSAMOUR) 

receivers with integral and rational amounts of oversampling and compare their performance to the 

conventional method. An important point often overlooked in the design of zero-forcing channel 

equalizers is that sometimes they are not unique. This becomes especially significant in multiuser 

applications where, as we will show, the nonuniqueness is practically guaranteed. We exploit this 

flexibility in the design of AMOUR and FSAMOUR receivers and achieve noticeable improvements 

in performance. 
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Figure 2: (a)-(c) Equivalent drawings of a symbol-spaced AMOUR system. 

to eliminate the effects of {Cm,fc(z)} and {GmJ (z)} on the desired signal sm(n), and the equalizer Tm 

aimed at reducing the ISI introduced by the multipath channel Hm(z). Filters Gmj(z) are chosen 

to be FIR and are designed jointly with {Cm]fc(z)} to filter out the signals from the undesired users 

pL^m. The choice of {Cm<k{z)} and {Gmj(z)} is completely independent of the channels Hm(z) 

and depends only on the maximum channel order L. Therefore, in this paper we assume that CSI 

is available only at the block-equalizers Tm. If the channels are altogether unknown, some of the 

well-known blind equalization techniques [10], [8], [1], [2] can be readily incorporated at the receiver 

(see [4, 9]). While the multiuser system described here is ultimately equivalent to the one in [3], 

the authors believe that this design provides a new way of looking at the problem. Furthermore, 

the simplifications introduced by the block notation will prove instrumental in Sec. 3 and Sec. 4. 

In the following we design each of the transmitter and receiver building blocks by rewriting 

them in a matrix form. The banks of filters {Cmjfe(z)} and {GmJ(z)} can be represented in terms 

of the corresponding P x K and J x P polyphase matrices Cm and Gm respectively [14]. The 

(j,i)th element of Gm is given by gm,j(i) and the (i, k)th element of Cm by ^(i). Note that the 

polyphase matrices Cm and Gm become constant once we restrict the filters Cm^{z) and Gmj(z) 

to length P. 

The system from Fig. 1 can now be redrawn as in Fig. 2(a), where the receiver block is defined 

a.sTm = TmVmGm- The P x P block in Fig. 2(a) consisting of the signal unblocking, filtering 

through the mth channel and blocking can be equivalently described as in Fig. 2(b). Namely, it 

can be shown [14] that the corresponding Px P LTI system is given by the following matrix 

Hm = [Hm  X(z)]. (2) 



Here we denote by HTO the P x P - L full banded lower triangular Toeplitz matrix 

MO)        0        •■■        0 

i        MO) = 
hm(L)     ;     •••    o Hm = 

0 hm(L) 0 
(3) 

0 0       •••   hm(L) 

and X(z) is the P x £ block that introduces the IBI. By choosing the last £ samples of the spreading 

codes {Cmik(z)} to be zero, Cm is of the form Cm = [C£ 0T]T with the £ x K zero-block positioned 

appropriately to eliminate the IBI block X(z), namely we have 

HmCm = [Hm X(z)]- 
0 «ra^ti 

Therefore the IBI-free equivalent scheme is shown in Fig. 2(c), with the noise vector signal em(n) 

obtained by blocking the noise from Fig. 2(a). Next we use the fact that full banded Toeplitz 

matrices can be diagonalized by Vandermonde matrices. Namely, let us choose 

1 -l 
Pm.O 

1     A>i 

n-p+1 
Pmfi 
An,l 

— 1 — P-i-1 
1     Pm,J-l     ' ' '    PmJ-l - 

,    for   pm,j G C, (4) 

denote by 0m the first P-L columns of Gm and define the diagonal matrix 

ftmiPm) = diag[Hm(pmfl), Hm(pm,l), ■■■, Hm(Pm,J-l)], (5) 

with the argument defined as pm = [pmfi  pm,i ■ ■ • pm,J-i]- For any J G N and an arbitrary set of 

complex numbers {pm,j}jZo tne following holds 

GmHm = Hm{pm)®m. (6) 

The choice of {pm,j}jZo (which are also called signature points) is such that Gm eliminates MUI 

as explained next. It will become apparent that the signature points need to be distinct. 

Consider the interference from user /x ^ m. From Fig. 2(c) it follows that the interfering signal 

S/i(n) passes through the concatenation of matrices 

GmilllCll = Hll{pm)&mCtl = Hil{prn)Cll{pm),   where (7) 

Cß(Pm) = 

Cfifi(pmfi) C/j,l(pm,o) 

CAo(pm,l) Cß,i(pm,l) 

Cßlo(pm,J-l)     Cßti(pm,j-l) 

Cß,K-l(Pm,o) 
CßtK-l(Pm,l) 

Cß,K-\{pm,J-\) . 

(8) 



The first equality in (7) is a consequence of (6). From (7) we see that in order to eliminate MUI 

regardless of the channels it suffices to choose {Pm,j}m]=o ~   sudl that 

Cp,fc(/W) = 0,   Vm^M,   Vke[0,K-l],   Vje[0,J-l]. (9) 

In practice, the signature points pmj are often chosen to be uniformly spaced on the unit circle 

Pm,l I        MJ 0<1<J-1, (io) 

since this leads to FFT based AMOUR implementations having low complexity [3]. 

Equations (9) define (M -1)J zeros of the polynomials Cmtk(z). In addition to this, let Cm,k(z) 

be such that 

Cm,k(Pm,j) = AmPm,j> (U) 

where the multipliers Am introduce a simple power control for different users. At this point the 

total number of constraints for each of the spreading polynomials is equal to MJ. Recalling that 

the last L samples of spreading codes are fixed to be zero, the minimum spreading code length is 

given by P = MJ + L. Substituting (11) in (7) for p = m and recalling (6) we have 

GmHraCm   Ar 

1     „-1 n-
J+1 1 1       Pmfi       ' ''     rm,0 

1       Pm,l       •"•     Pm,l 

1     o-l n~J+x 

- l    Pm,J-l     ' ''     Pm,J-l 

'■m- 

Hm, (12) 

where HTO is the J x K north-west submatrix of H„ 

In order to perform the channel equalization after MUI has been eliminated we need to invert 

the matrix product VmHm in (12), which in turn needs to be of sufficient rank. From (7) with 

pmwe conclude that (12) can be further written as a product of a diagonal matrix TCm(pm) and 

aJxK Vandermonde matrix Cß(pm). The second matrix Cß{pm) is invertible as long as {pmj} 

are distinct. The rank of Um{pm) can drop by at most L, and this only if all the zeros of Hm{z) 

occur at the signature points pmj. Thus, the sufficient condition for the invertibility of (12) is 

J = K + L. In summary, the minimal system parameters are given by 

J = K,   (known CSI),   J = K + L,   (unknown CSI)   and P = MJ + L. 

In the limit when K tends to infinity the bandwidth expansion becomes 

P      f \MK + L)/K for known CSI   K-^> M 

BW expansion- % = \[M(K+ L) + L]/K   unknown CSI 



Since there are M simultaneous transmitters in the system, this is the minimum possible bandwidth 

expansion. 

Prom Fig. 2(c) it readily follows that (ignoring the noise) 

sm(n) = J4mrmV-1VmHmsTO(n) = AmTmÜmsm(n). (13) 

Therefore, Tm can be chosen to eliminate the ISI in the absence of noise and this would be a zero- 

forcing equalizer (ZFE). For more details on this and alternative equalizers, the reader is referred to 

[3, 4]. In the following we consider the improvement of this conventional AMOUR system obtained 

by sampling the received continuous-time signal more densely than at the symbol-rate given by the 

transmitters. 

3    AMOUR with integral oversampling 

Fractionally-spaced equalizers (FSE) typically show an improvement in performance at the expense 

of more computations per unit time required at the receiver. FSEs with integral oversampling 

operate on a discrete-time signal obtained by sampling the received continuous-time signal q times 

faster than at the transmission rate (thus the name fractionally-spaced). Here q is assumed to be 

an integer greater than one. Our goal in this section is to introduce the benefits of FSEs in the ISI 

suppression, without violating the conditions for perfect MUI cancellation irrespective of the uplink 

channels. As will be clear shortly, this is entirely achieved through the use of the fractionally-spaced 

AMOUR (FSAMOUR) system, introduced in the following. 

In order to develop the discrete-time equivalent structure for the AMOUR system with integral 

oversampling at the receiver, we consider the continuous-time AMOUR system with a FSE shown 

in Fig. 3(a). Let T be defined as the symbol spacing at the output of the transmitter [signal um(n) 

in Fig. 3(a)]. Working backwards we conclude that the rate of the blocked signal sm(n) is P times 

lower, i.e. 1/PT. Since sm(n) is obtained by parsing the information sequence sm(n) into blocks 

of length K as shown in Fig. 2(a), we conclude that the corresponding data rate of sm(n) at the 

transmitter is K/PT. 

Each of the transmitted discrete signals um(n) are first converted into analog signals and passed 

through a pulse-shaping filter. The combined effect of the reconstruction filter from the D/A 

converter, pulse shaping filter as well as the continuous time uplink channel followed by the receive 

filters is referred to as the equivalent channel and is denoted by hc(i). After passing through the 

equivalent channel, the signal is corrupted by the additive noise and interference from other users. 

The received waveform xc(t) is sampled at q times the rate at the output of the transmitter [see Fig. 
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Figure 3:   (a) Continuous-time model for the AMOUR system with integral oversampling.   (b) 
Discrete-time equivalent drawing, (c) Polyphase representation for q = 2. 

3(a)]. The sequence xm(n) with rate q/T enters the fractionally spaced equalizer which operates at 

the correspondingly higher rate. Accompanied with the equalization process, some rate reduction 

also needs to take place at the receiver, so that the sequence sm(n) at the decision device has 

exactly the same rate K/PT as the starting information sequence. 

Now we derive the discrete-time equivalent of the oversampled system from Fig. 3(a). Consider 

the received sequence xm(n) in the absence of noise and MUI. We can see that 

T °° T1 

,(n) = xc(n-) =   Y^ um(k)hc(n- - kT). 
q       k=-oo q 

(14) 

Defining the discrete time sequence h$(n) = hc(nT/q), which is nothing but the waveform hc(t) 

sampled q times more densely than at integers, we have 
oo 

*m(n)=   J2 umm%>(n-kq). (15) 
k=—oo 

This is shown in Fig. 3(b), where the noise and MUI which were continuous functions of time in Fig. 

3(a) now need to be modified (by appropriate sampling). Notice that although the discrete-time 

equivalent structure incorporates the upsampling by q at the output of the transmitters, this does 

not result in any bandwidth expansion, since the physical structure is still given in Fig. 3(a). Our 

goal in this section is to design the block in Fig. 3(b) labeled "equalization and rate reduction". In 

the following we introduce one possible solution that preserves the MUI cancellation property as 

it was described in Sec. 2 yet provides additional flexibility when it comes to the ISI elimination 

part. For simplicity in what follows we assume q = 2, however it is easy to show that a similar 

design procedure follows through for any integer q. 



Oversampling by q = 2. First we redraw the structure in Fig. 3(b) as shown in Fig. 3(c). Here 

Hmfi(z) and Hm>l(z) are the Type-1 polyphase components [14] of the oversampled filter Hm (z). 

In other words 

HM(z) = Hmi0(z
2) + z-lHm,1(z

2). (16) 

In Fig. 3(c) we also moved the additive noise and interference past the delay and upsamplers 

by splitting them into appropriate polyphase components in a fashion similar to (16). Before we 

proceed with the design of the fractionally-spaced AMOUR receiver, we recall that the construction 

of the spreading codes {Cm,fc(z)} and the receive filters {Gmj(z)} in Sec. 2 ensured the elimination 

of MUI regardless of the propagation channels as long as their delay spreads are bounded by L. 

Returning to Fig. 3(c) in view of (16) we notice that Hm>0(z) is nothing but the original integer- 

sampled channel Hm{z). Also, each of the subchannels Hm>i(z) can have the order at most equal 

to the order of Hm{z), i.e. the maximum order of Hm>i(z) is L. Moreover, each of the q polyphase 

components of MUI drawn in Fig. 3(c) is obtained by passing the interfering signals uß(n) through 

the corresponding channel polyphase components Hßii(z). From the discussion in Sec. 2 we know 

how to eliminate each of these MUI components separately. Therefore, our approach in the equalizer 

design will be to keep these polyphase channels separate, perform the MUI cancellation in each of 

them and combine the results to obtain the MUI-free signal received from user m. This is achieved 

by the structure shown in Fig. 4. 

The received oversampled signal is first divided into the Type-2 polyphase components (a total 

of q polyphase components for oversampling by q). This operation assures that in each of the 

equalizer branches the symbol rate is equal to 1/T. At the same time, each branch contains 

only one polyphase component of the desired signal and MUI from Fig. 3(c). These polyphase 

components are next passed through a system that resembles the conventional AMOUR receiver 

structure from Fig. 2(a). Notice one difference: while the matrices Gm and V"1 are kept the same 

as before, the matrices for ISI mitigation rm,( are different in each branch and their outputs are 

combined, forming the information signal estimate sm(n). Careful observation confirms that the 

output symbol rate is equal to K/PT, precisely as desired. 

In order to further investigate the properties of the proposed solution we show the complete 

FSAMOUR system in terms of the equivalent matrix building blocks in Fig. 5(a). The effect of the 

oversampling followed by the receiver structure with q branches is equivalent to receiving q copies 

of each transmitted signal, but after going through different multipath fading channels Hmti{z). 

This temporal diversity in the received signal is obviously beneficial for the equalization process as 

10 
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Figure 5:  (a) A possible overall structure for the FSAMOUR system,   (b) Simplified equivalent 
structure for ISI suppression. 

will be demonstrated in Sec. 3.1. As mentioned previously, MUI elimination in AMOUR systems 

does not depend on the uplink channels as long as their order is upper-bounded by L, and this is 

why the proposed FSAMOUR system eliminates MUI in each branch of Fig. 5(a). Notice that the 

length conditions on P and J for MUI elimination remain the same as in Sec. 2. 

Repeating the matrix manipulations similar to those demonstrated in Sec. 2, but this time in 

each branch separately, we conclude that the equivalent FSAMOUR system is shown in Fig. 5(b). 

Lower triangular Toeplitz matrices HTOii here correspond to different polyphase components of the 

oversampled channel. Noise vectors e,(n) are obtained by appropriately blocking and filtering the 

noise from Fig. 5(a). As in [3, 4] the equalizer Tm = [rm_o rm,i] can be constructed as a RAKE, 

zero-forcing or MMSE receiver corresponding to the transmitter Hm = [H^0  H^ll]T: 

p(rake) _ xif 
■"■ m "tin 

ltfe> = (ülÜmY^l  (pseudo-inverse), 

r(mmse) = ^g^ ^ + j^^fit^"1 , (17) 

where TZSS and 1Zee represent the autocorrelation matrices of the signal sm(n) and noise e(n) = 

11 



[ej(n)  eJ(n)]T processes respectively. See Fig. 5(b). 

The improvement in performance over the conventional AMOUR system comes as a result of 

having more degrees of freedom in the construction of equalizers, namely qJ - K more rows than 

columns in FSAMOUR compared to 3 - K in AMOUR. Another way to appreciate this additional 

freedom in the ZFE design is as follows. In the AMOUR systems the construction of ZFEs amounts 

to finding Fm as in (13) such that rmHm = 1/r, in other words rm is a left inverse of Hm. On the 

other hand, referring to Fig. 5(b) we conclude that the ZFEs in the FSAMOUR systems need to 

satisfy 

rm,oHmio + rm]iHm]i = IK 

thus providing more possibilities for the design of Tm,i- In addition to all this, the performance 

of the zero-forcing solutions can be further improved by noticing that left inverses of Hm are not 

unique. In the following subsection we derive the best ZFE for a given FSAMOUR system with 

the oversampling factor q. This optimal solution corresponds to taking advantage of the qJ - K 

degrees of freedom present in the equalizer design. 

3.1    Optimal FSAMOUR ZFE 

Consider the equivalent FSAMOUR system given in Fig. 6(a). It corresponds to the system 

shown in Fig. 5(b) with one difference, namely the block-equalizer is allowed to have memory. 

In the following we investigate the case of zero-forcing equalization, which corresponds to having 

sm(n) = sm(n) in the absence of noise. Obviously, this is achieved if and only if Tm{z) is a left 

inverse of Hm. Under the conditions on P and J described in Sec. 2 this inverse exists. Moreover, 

the fact that Hm is tall implies that this inverse is not unique. Our goal is to find the left inverse 

Tm(z) as in Fig. 6(a) of a given order that will minimize the noise power at the output, i.e. 

minimize the power of sm(n) given that sm(n) = 0. The equalizer design described here is closely 

related to the solution of a similar problem presented in [21]. One difference is that the combined 

transmitter /channel matrix Hm in Fig. 6(a) is constant, so we use its singular value decomposition 

[5] instead of a Smith form decomposition as in [21]. 

The tall rectangular matrix Hm can be decomposed as [5] 

Hm  —   VJr, 1m 0 
Vm, (18) 

where UTO and Vm are qJxqj and KxK unitary matrices respectively, and Sm is a KxK diagonal 

matrix of singular values. Since we assumed HTO has rank K it follows that Sm is invertible. It 

12 
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can be seen from (18) that the most general form of a left inverse of Hm is given by 

rm(z) = v|n[s-1 Am(z)]Vl, (19) 

where Am(z) is an arbitrary K x (qj - K) polynomial matrix and represents a handle on the 

degrees of freedom in the design of Tm(z). Defining the K x qJ, (qJ - K) x qj and K x (qJ - K) 

matrices D0, Di and Bm(z) respectively as 

^l4,   and Bm(z) = Vjn-Am(z), Do 
Di 

(20) 

equation (19) can be re-written as [see Fig. 6(b)] 

rm(0)=V]nS-1-Do + Bm(z)-D1. (21) 

Since there is a one to one correspondence (20) between the matrices Am(z) and Bm(z), the design 

objective becomes that of finding the Bm(z) of a fixed order Nb - 1, given by its impulse response 

Bm(z) =   22 ^™.,nZ~n, 
n=0 

(22) 

that minimizes the noise power E{eLem}/K at the output of Fig. 6(b). The operator £{■} denotes 

the expected value. From Fig. 6(b) it is evident that the optimal Bm(z) in this context is nothing 

but a linear estimator of a vector random process u(n) given v(n). The solution is well-known [11] 

and is given by 

[Bm,0  Bmil • • • B^-x] =B = -E{u(n)Vt(n)} ■ ^, (23) 

13 



where V(n) = [vT(n) vT(n - 1) ■ • • vT(n -NB + 1)]T and 7£VV is its autocorrelation matrix. Next 

we rewrite the solution (23) in terms of the noise statistics, namely its qJ x qJ crosscorrelation 

matrices Kee(k) = E{em(n)e\n{ri - k)}. First note that 

•R-vv = 

D1^ee(0)Dt
1 

Diftee(l)Dl 

Diftee(l)Dj 

DiTZee^Dj 
D!^ee(iV6 - l)Dl n 

Di^eeC^b - 2)Dj 

Di7See(0)Di 

(24) 

. Di^ee^fe - l)Dt    D^ee^ - 2)üJ     • ■ ■ 

Similarly, we can rewrite 

E{u(n)V\n)} = V^ • S"1 ■ D0 • [^(Opt  72ee(lpl   • • ■   Kee{Nb - lp{ (25) 

For sufficiently large input block size qJ it is often safe to assume that the noise is uncorrelated 

across different blocks; in other words TZee(k) = 0 for k ^ 0. In this important special case the 

optimal Bm(z) is a constant, namely 

Bm(z) = Bm,0 = -VtlS-1D0^ee(0)Dt
1 (D17eee(0)Dt

1) ~*. (26) 

From (26) and (21) we get the optimal form of a ZFE 

p(opt) _ Vf y;-l IK    - D0^ee(0)Di (Di72ee(0)Dl)   * ui,. (27) 

Another important special case occurs when the noise samples at the input of the receiver are 

i.i.d. It is important to notice here that e(n) in Figs. 5 and 6 is obtained by passing the input 

noise through a bank of q receiver front ends V^Gm. Therefore, the noise autocorrelation matrix 

72.ee (0) is not likely to be a scaled identity. Instead, in this case we have 

Tlee{k) = 5k • diagb<z<,_!{^ • V-1GTOG]nVm
t}, (28) 

which is a qJ x qP block-diagonal matrix, with noise variances o\ corresponding to different signal 

polyphase components. Starting from (4) and (12) the reader can readily verify that for large values 

of M, V^GmGmVm «M'lj. Therefore, in the case of white channel noise and no oversampling 

in a system with many users, the optimal ZFE from (27) becomes 

r(white noise) =vti[s-l   Q] u^ (29) 

This follows since D0üJ = 0 and TZee(k) « 5k ■ o\ ■ I 

At this point we would like to make a distinction between the optimal ZFEs in AMOUR and 

FSAMOUR systems. From the derivations presented in this subsection it is evident that the optimal 

14 



ZFEs can be constructed in a traditional AMOUR system of [3, 4] and it is to be expected that this 

solution would perform better than the ordinary ZFE based on the matrix pseudo-inverse similar 

to (17). However, in the following we show that if the channel noise in Fig. 3(a) is i.i.d. then 

any optimization of ZFEs in AMOUR systems will not improve their performance. This is not 

true for fractionally spaced AMOUR systems, since the noise samples in vectors e0(n) and ei(n) in 

Fig. 6(b) need not have the same variances although they remain independent. This is due to the 

fact that e0(n) and ex(n) correspond to signals received through different polyphase components 

of the channel. Consequently, in the FSAMOUR case, the noise autocorrelation matrices 7£ee(0) 

appearing in (27) are not given by scaled identity matrices and (29) does not correspond to the 

optimal solution. Now let us compare the optimal ZFE in the AMOUR system for the white noise 

(29) to the corresponding zero-forcing solution given in (17). The result is summarized as follows. 

Proposition 1. Pseudo-inverse is the optimal AMOUR ZF SSE if the noise is white. 

Comment. This result is indeed well-known. The reader is referred to [7] for a detailed 

treatment of various equalizers in a traditional CDMA system. For completeness, in the following 

we give a short proof of Proposition 1. 

Proof. Starting from the traditional ZFE T^ e) we have 

r£f) = (ülümY'ül = (vl [sL o] i4u„ ^m   V   i    vt sL o ut m 

^vMs-1 o]uL = ithitenoise>. (30) 

A more insightful way to look at the result from Proposition 1 is that there is nothing to be gained 

by using the optimal solution if there is no oversampling at the receiver. In contrast to this, using 

the optimal ZFEs in FSAMOUR systems leads to a noticeable improvement in performance over 

the simple pseudo-inverses as is demonstrated in Sec. 3.2. Finally, note that an alternative to using 

the equalizer (27) would be to apply pre-whitening filters followed by equalizers from (29). 

3.2    Performance evaluation 

In this subsection we compare the performance of the conventional (SSE) AMOUR described in Sec. 

2 and the FSAMOUR system from Sec. 3 with oversampling ratio q = 2. System parameters were 

given by K = 12, M - 4, while J and P were chosen to be the minimum for the guaranteed existence 

of channel ZFEs as explained in Sec. 2. The performance results were obtained by averaging over 

thirty multipath channel realizations. The equivalent channel was modeled as a combination of 

a raised cosine (constant part in the transmitter and the receiver) and a randomly chosen short 

multipath channel. The resulting half-integer sampled, channel impulse responses hW(n) were of 

15 
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Figure 7: Probability of error as a function of SNR in AMOUR and FSAMOUR systems. 

the eleventh order.   The equivalent, integer-spaced channels were obtained by keeping the even 

samples and are of order L = 5. 

The channel noise, which was originally AWGN, was colored by the square root raised cosine at 

the receiver. The signal to noise ratio (SNR) was measured after sampling at the entrance of the 

receiver [point xm(n) in Fig. 3(a)]. Notice that SNR does not depend on the oversampling ratio 

q as long as the signal and the noise are stationary. The performance curves are shown in Fig. 7. 

The acronyms "SSE" and "FSE" represent AMOUR and FSAMOUR systems, while the suffices 

"ZF", "MMSE" and "OPT" correspond to zero-forcing, minimum mean-squared error and optimal 

ZFE solutions respectively. There are several important observations that can be made from these 

results: 

• The overall performance of AMOUR systems is significantly improved by signal oversampling 

at the receiver. 

• The performance of ZFEs in FSAMOUR systems can be further improved by about 0.4[dB] 

by using the optimal equalizers that exploit the redundancy in ZFE design as described in 

Sec. 3.1. This is due to the fact that the optimal solution is given by (27) rather than (29). 

As explained previously, the same does not hold for AMOUR systems. 

• The performance of the optimal ZFEs in FSAMOUR systems is almost identical to the per- 

formance of the optimal1 MMSE equalizers. Thus there is practically no loss in performance 

as a result of using the optimal ZFE given by (27) instead of the MMSE equalizer (17). The 

'The MMSE equalizer is the optimal solution in terms of minimizing the energy of the error signal at the receiver 

for the fixed system parameters. 
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advantages of using a ZFE become evident by comparing the expressions (27) and (17). As 

opposed to the MMSE solution T^™^, zero-forcing equalizer r£pt) does not require the 

knowledge of the signal statistics Kss and if the noise is white and stationary, the solution 

r^pt) is independent of the noise variance, which plays a significant role in the corresponding 

MMSE solution (17). More detailed analysis of mentioned advantages can be found in [20]. 

• Even though the noise was colored, a simple pseudo-inverse happens to yield an almost 

identical performance as the MMSE equalizer, and is therefore the optimal ZFE in AMOUR 

systems with no oversampling. 

In the next section we introduce the modification of the idea of the integral oversampling of the 

received signal to a more general case when the amount of oversampling is a rational number. 

4    AMOUR with fractional oversampling 

While FSAMOUR systems with the integral oversampling can lead to significant improvement in 

performance compared to traditional AMOUR systems, the notion of oversampling the received 

CDMA signal might be less popular due to very high data rates of the transmitted CDMA signals. 

According to the scenario of integral oversampling the data rates at the receiver are at least twice 

as high as the rates at the transmitter, which makes them prohibitively high for most sophisticated 

equalization techniques. In this section we explore the consequences of sampling the continuous- 

time received signal xc(t) in Fig. 3(a) at a rate that is higher than the symbol rate 1/T by a 

fractional amount. To be more precise, suppose the amount of oversampling is q/r, where q and 

r are coprime integers satisfying q > r. If q = r + 1 for high values of r the data rate at the 

receiver becomes almost identical to the one at the transmitter which is rather advantageous from 

the implementational point of view. It will soon become evident that the case when q and r share 

a common divisor can easily be reduced to the case of coprime factors. This said, it appears that 

the discussion from the previous section is redundant since it simply corresponds to fractional 

oversampling with r = 1. However, it is instructive to consider the integer case separately since it 

is easier to analyze, and provides some important insights. 

Consider Fig. 3(a) and suppose xc(t) has been sampled at rate q/r. This situation is shown in 

Fig. 8(a). Performing the analysis very similar to the one in Sec. 3, we can easily show that in 

this case we have 
oo 

xm(n)=   J2  um(k)h$(nr-kq). (31) 
k=—oo 
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Figure 8: (a) Continuous-time model for the AMOUR system with fractional oversampling ratio 
q/r. (b) Discrete-time equivalent drawing. 

This is shown in Fig. 8(b), with appropriate modification of the noise from Fig. 8(a) and with 

h&\n) denoting hc(nT/q), just as it did in the case of integer oversampling. 

The structure shown in Fig. 8(b) consisting of an expander by q, filter H$(z) and a decimator 

by r has been studied extensively in [18, 19, 20]. It has been shown in [20] that without loss of 

generality we can assume q and r are coprime in such structures. Namely, if p was a nontrivial 

greatest common divisor of q and r such that q = q' ■ p and r = r' • p, with q1 and r' mutually 

coprime, then the structure is equivalent to the one with q replaced by q', r replaced by r' and the 

new filter corresponding to the zeroth p-fold polyphase component [14] of Hm (z). 

Now we are ready for the problem of multiuser communications with the rational oversampling 

ratio of q/r. The analysis of the fractionally oversampled FSAMOUR systems will turn out to be 

somewhat similar to the discussion in Sec. 2 and in order to make the presentation more accessible 

we have grouped the most important steps into separate subsections. One noticeable difference 

with respect to the material from Sec. 2 is that in this section we will mostly deal with larger, 

block matrices. This comes as a consequence of a result on fractionally sampled channel responses, 

presented in a recent paper on fractional biorthogonal partners [20]. 

4.1    Writing the fractionally sampled channel as a block convolution 

Combining the elements from Figs. 8(a) and 8(b), we conclude that the discrete-time equivalent 

scheme of the FSAMOUR system with the oversampling ratio q/r is shown in Fig. 9(a). It has 

been established in [20] that the operation of filtering by H${z) surrounded by an expander and 

a decimator as it appears in Fig. 9(a) is equivalent to blocking the signal, passing it through a 

qxr matrix transfer function Em(z) and then unblocking it. This equivalent structure is employed 
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Figure 9: (a) Discrete-time model for the FSAMOUR system with the oversampling ratio q/r. (b) 
Equivalent drawing, (c) Redrawing a block from (b). 

in Fig. 9(b). The unblocking element of darker shade represents the "incomplete" unblocking, 

i.e. it converts a sequence of blocks of length P into a higher rate sequence of blocks of length 

r. In other words, it can be thought of as the unblocking of a length-P vector sequence into a 

scalar sequence, followed by the blocking of the obtained scalar signal into a length-r vector signal. 

Here for simplicity we assumed r divides P, however this condition is unnecessary for the above 

definition to hold and we return to this point later. 

The relation between the filter H$(z) and the corresponding matrix Em(z) is rather compli- 

cated and is introduced in the following. First, let us write H$(z) in terms of its Type-2 g-fold 

polyphase components 
0—1 

(32) !&«>(*) = £ffm,fc(*V. 
fe=0 

Next, recall from the Euclid's algorithm that since q and r are mutually coprime, there exist 

Q,ReZ suchthat 

qQ + rR = 1. (33) 

Let us define the filters Pm,fc(z) and their Type-1 r-fold polyphase components Ek,i(z) as 

r-l 

Pm,k(z)^zkQHmik(z) = '£lEk^)z-1,   for 0 < A < « - 1. 
l=o 

(34) 
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Then it can be shown [20] that the equivalent matrix transfer function Em(z) is given by 

Em(«) = 

Eofl(z)       E0,i(z) 
Elfi(z)      Ehl{z) 

Eo,r-\{z) 
Ehr-l(z) 

(35) 

Eq-i,o(z)   Eq-i,i(z)   ■■■   Eq-i,r-i(z) 

Now consider the block surrounded by a dashed line in Fig. 9(b). This can trivially be redrawn 

as in Fig. 9(c). The denoted PxP transfer function Em(z) is a block pseudo-circulant 

Em(z) = 

E0        0 
Ei      EQ 

0     Z_1
EJV   z'^N-i 

0 0 z-1Ew 

EN   Ejv-i   ■■•    E0 0 0 
0       EJV     •••    Ei       E0 0 

z_1Ei 
Z_1E2 

0 
0 

(36) 

0 0 ■■■EN EJV-I EW_2 ••■ Eo 

The q x r blocks E„, for 0 < n < N in (36) represent the impulse response of Em(z), while N is 

the order of the matrix polynomial and it depends on the choice of r and on the maximum channel 

order L. This issue will be revisited shortly. It is implicitly assumed in (36) that q divides P. For 

arbitrary values of r and q we can write 

p = q • nq + eq  and  P = r ■ nr + er, (37) 

where nq, e„ nr, er € N and eq < q, er < r. Equation (36) obviously corresponds to eq = er = 0, i.e. 

when r divides P and q divides P. For general values of r and g, the block pseudo-circulant Em(z) 

from (36) gets transformed by inserting er additional columns of zeros in each block-row and by 

adding eq additional rows at the bottom. In the following we will assume eq = er = 0 since this 

leads to essentially no loss of generality. Furthermore, we will assume that nq = nr, or equivalent^ 

that P = qnr, which is a valid assumption since P is a free parameter. 

4.2    Eliminating IBI 

Next we would like to eliminate the memory dependence in (36) which is responsible for inter-block 

interference (IBI). It is apparent from Fig. 9 that this can be achieved by choosing Cm such that 

its last rN rows are zero. This effectively means that the transmitter is inserting a redundancy of 

rN symbols after each block of length P - rN. Let us denote by Em the P x (P - Nr) constant 

matrix obtained as a result of premultiplying Cm by Em(z). Next, we note that the blocked version 
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of the equality (6) holds true as well. In other words, Em can be block-diagonalized using block- 

Vandermonde matrices. Namely, let us choose 

Gm — 

„-1 T 
Pmfi'-Q 

Pm,i*-q 

rtg-MT 

1 

_1       ■, —n„+l 

Pm,0      h 
-nq+lT 

Pml     h ,   for  pmj € C, (38) 

T -1 T -Ug-t-Lj 
Lq    Pm.J-11?    ""    Pm,J-\l1 J 

denote by @m the following Jr x (P - Nr) matrix, recalling that nr = nq 

&r 

Pmfilr 

Pm^r 

(nr_N_l) 
Pmfi lr 

(nr_jV_l) 
Pm,\ ** 

Jr     Pm,J-llr Pm,J-l J 

(39) 

and define the gJ x r J block-diagonal matrix 

£m{Pm) = diag[Em(/9mi0),Em(pm,i), • • ■ ,Em(pm,j_i)]. 

Then for any J € N and any set of distinct complex numbers {pmj}/=o tne following holds 

GmEm = £m\Pm)®rn- 

(40) 

(41) 

Notice that we used the symbols Gm and 0m to represent different matrices from the ones in Sec. 

2. This is done for notational simplicity since no confusion is anticipated. 

Once we have established the connection with the traditional AMOUR systems, we follow 

the steps similar to those in Sec. 2 in order to get conditions for MUI cancellation and channel 

equalization regardless of the channels hm(n). Given the analogy between the equations (41) and 

(6) we conjecture that the block at the receiver in Fig. 9 responsible for MUI elimination should 

be given by Gm as in (38). In the following we first clarify this point and then proceed to state the 

result on the existence of channel ZFEs. 

4.3    MUI cancellation 

The interference at the mth receiver coming from the user \i ^ m is proportional to the output 

of the concatenation of matrices GmEMCM, where C„ is the nonzero part of the spreading code 

matrix C„ and is exactly the same as the one used in (7). Using (41) we see that the MUI term is 

proportional to 

GTOEMCM = fM(pm)eroCM = £M(pJCM(pm),   with (42) 
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CuKPm) = 

C^(pm,o) 
CM(pm,l) 

. C^(/3m,j_l) _ 

,   and  Cp(7) 

,(0) (0) 
cZil)       C?S(7)      -    ^(7) 
C$(7)       <#!(7) 

-.(r-l) 

Cii-i(7) 

V-l) ^(7)    <rX)(7)    -•    CK^(7)J 

■     (43) 

The entries C^k(j), for 0 < Jb < Ä" - 1, 0 < I < r - 1 in (43) represent the Jth Type-1 polyphase 

components of the fcth spreading code used by user p, evaluated at z = 7. In other words, the fcth 

spreading code in Fig. 1(a) can be written as 

1=0 

M-l,J-l 
It follows from (42)-(43) that MUI elimination can be achieved by choosing {pm,j}mjj0      

sudl 

that 

C^k(pmJ) = 0,   Vm^/i,   Vke[0,K-l),   Vj6 [0,7-1],   VJe[0,r-l]. (44) 

Equations (44) define (M-1)7 zeros for each of the r polyphase components of Cm,k(z)- In addition 

to this, we will choose the nonzero values similarly as in Sec. 2 such that the channel equalization 

becomes easier. To this end, let us choose 

C^k(Pmj) = Am-5(l-ß)-p^j, (45) 

for integers a and ß with ß < r chosen such that k = ar + ß. This brings the total number 

of constraints in each of the spreading code polynomials to MJr. Recalling that the last Nr 

samples of spreading codes are fixed to be zero, the minimum spreading code length is given by 

P = (MJ + N)r. 

4.4    Channel equalization 

The last step in the receiver design is to eliminate the ISI present in the MUI-free signal. For an 

arbitrary choice of integers K and r with r < K we can write 

K = r ■ ar + ßr, (46) 

with ar,ßr e N and ßr < r.  Let us first assume that K was chosen such that ßr = 0 in (46). 

Substituting (45) in (43) for p = m we have 

Cm(pmj) = Am   Ir   Pmjlr     "■    Pm/       ^r (47) 

22 



which further leads to 

GmEfiCß — Am • &ii\Pn 

Pmßlr 

Pm,\lr 

T        /,-!        T n~^ar~ 
. I*    Pm,J-llr     '" '     Pm,J-l 

(ar-l) 
Pmfl        lr 
_(ar-l)r 

Pm,\ Lr 

-K-i)T 

(48) 

Recalling the relationship (41) we finally have that 

G-mEmCm — An 

q       Pmfl*-'! 

q       Pm^V-q 

{ar+N-l) 
"     Pmfl L1 

• ■     Pm,l L9 

T       „-1       T -K+AT-1)T 

■Em, (49) 

where Em is the (ar + N)q x ÜT north-west submatrix of Em. If ^r > 0 in (46), this simply leads 

to adding the first ßr columns of the next logical block to the right end in (47), consequently 

augmenting the matrices Vm and Em in (49). 

The channel equalization which follows the MUI cancellation amounts to finding a left inverse 

of the matrix product Vm • Em appearing on the right hand side of (49). The first matrix in this 

product is block-Vandermonde and it is invertible if J > ar + N and if {ftnj}/=o are distinct (the 

latter was assured previously). Therefore we get the value for one of the parameters 

J = ar + N. (50) 

Notice that since q > r, from (50) and (46) it automatically follows that Vm • Em is a tall matrix, 

thus it could have a left inverse. However, these conditions are not sufficient. Another condition 

that needs to be satisfied is the following 

rank{GmETOCm} = K   =►   rank{£m(/3TO)} > K. (51) 

In other words, in order for the channel hm(n) to be equalizable using ZFEs after oversampling 

the received signal by q/r and MUI cancellation, we can allow for the rank of Sm{pm) in (40) 

to drop by the maximum amount of r • TV, regardless of the choice of signature points {pm,j}- 

Obviously, this cannot be guaranteed regardless of the channel and other system parameters simply 

because the matrix polynomial Em(z) could happen to be rank-deficient for all values of z. At 

best we can only hope to establish the conditions under which the rank equality (51) stays satisfied 

regardless of the choice of signature points. This is different from the conventional AMOUR and 

integral FSAMOUR methods described in Sees. 2 and 3, where we had two conditions on system 
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parameters for guaranteed channel equalizability depending on whether the channel was known 

(J > K) or unknown (J > K + L). Here we cannot guarantee equalizability even for the known 

CSI, if the channel leads to rank-deficient Em(z). Luckily, this occurs with zero probability.2 If 

this is not the case, the channel can be equalized under the same restrictions on the parameters 

regardless of the specific channel in question. The following theorem establishes the result, under 

one extra assumption on the decimation ratio r. 

Theorem 1. Consider the FSAMOUR communication system given by its discrete-time equiv- 

alent in Fig. 9(a). Let the maximum order of all the channels {hm{n)}™ll be L. Let us choose the 

integers r > L -f 1 and q > r such that the irreducible ratio q/r closely approximates the desired 

amount of oversampling at the receiver. Next, choose an arbitrary ar > r and take the following 

values of the parameters: 

K = r-ar,   J = ar + 1,   P = (MJ+l)r,   P = (MJ+l)q. (52) 

1. Multiuser interference (MUI) can be eliminated by blocking the received signal into the blocks 

of length P and passing it through the matrix GTO as introduced in (38) with nq = MJ + 1, 

as long as the spreading codes {cm,k(n)}k=o are chosen according to (44) and (45). 

2. Under the above conditions, the channel can either be equalized for an arbitrary choice of the 

signature points {pm,j} or it cannot be equalized regardless of this choice. More precisely, let 

Em(z) be the polyphase matrix corresponding to hm(n) as derived in (32)-(35). Under the 

above conditions there are two possible scenarios: 

• maxrank{Em(2:)} = r. In this case the system is ZFE-equalizable regardless of {pm,j}- 
zee 

• maxrank{Em(z)} < r. In this case there is no choice of {pmj} that can make the system 
zee 
ZFE-equalizable. 

Comment. The condition r > L + 1 introduced in the statement of the theorem might seem 

restrictive at first. However, in most cases it is of special interest to minimize the amount of 

oversampling at the receiver and try to optimize the performance under those conditions. This 

amounts to keeping q roughly equal to, yet slightly larger than r and choosing r large enough so 

that the ratio q/r approaches unity. In such cases r happens to be greater than L + 1 by design. 

The condition ar > r is not necessary for the existence of ZFEs. It only ensures the absence of 

ZFEs if the rank condition on Em(z) is not satisfied. 

2Moreover, unless Em(z) is rank-deficient, even if it happens to be ill-conditioned for certain values of pm,j, for 
known CSI this can be avoided by the appropriate choice of signature points. 
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Figure 10: Proposed structure of the FSAMOUR receiver in systems with fractional oversampling 

Proof. The only result that needs proof in the first part of the theorem is that the order of 

Em(z) is N = 1, whenever r > L + 1. If N = 1, all the parameters in (52) are consistent with the 

values used so far in Sec. 4. Then the first claim follows directly from the discussion preceding the 

theorem. In order to prove that JV = 1 we use the following lemma whose proof can be found in 

the appendix. 

Lemma 1. Under the conditions of Theorem 1 Em(z) can be written as 

Em(z)=Um-Dm(z)- Em,o(z) 
Em,i(z) q—r 

(53) 

where Em,0(z) and Ero,i(z) are polynomial matrices of order N = 1, Um is a unitary matrix and 

Dm(z) is a diagonal matrix with advance operators z1 on the diagonals. 

Having established Lemma 1, the first part of the theorem follows readily since Um ■ Dm(z) can 

be equalized effortlessly and thus the order of Em(z) is indeed N = 1 for all practical purposes. 

For the second part of Theorem 1, we use Lemma 2 which is also proved in the appendix. 

Lemma 2. The difference between the maximum and the minimum achievable rank of Sm(pm) 

given by (40) is upper bounded by r — 1. 

From the proof of Lemma 2 it follows that we can distinguish between two cases: 

• If the normal rank of Em(z) is r, then the minimum rank of Sm(pm) over a11 choices of 

signature points is lower bounded byrJ-r + l = .ftT + l and therefore ZFE is achieved by 

finding a left inverse of the product in (49). 

• If the normal rank of Em(z) is less than r, then the maximum rank of Sm(pm) is given by 

maxrank{5m(pm)} < (r - 1) J = (r - l)(ar + 1) = K + (r - ar - 1) < K. 

Therefore, regardless of the signature points, ZFE does not exist. 

This concludes the proof of Theorem 1. V V V 

To summarize, in this section we established the algorithm for multiuser communications based 

on AMOUR systems with fractional amount of oversampling at the receiver. The proposed form 
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of the receiver (block labeled "equalization and rate reduction" in Fig. 9) is shown in Fig. 10. As 

was the case with the simple AMOUR systems, the receiver is divided into three parts namely Gm, 

V-1 and Tm. The first block Gm is supposed to eliminate MUI at the receiver. Second block V"1 

represents the inverse of Vm defined in (49) and essentially neutralizes the effect of Cm and GTO 

on the MUI-free signal. Finally, rm is the block that aims at equalizing the channel which is now 

embodied in the tall matrix Vm [see (49)]. 

Note that even though the notations may be similar as in Sec. 2, the building blocks in Fig. 

10 are quite different from the corresponding ones in AMOUR systems. The construction of Gm is 

described in (38) with the signature points chosen in accordance with the spreading code constraints 

(44)-(45). The channel equalizer rm can be chosen according to one of the several design criteria 

described in (17). Instead of Hm in (17) we should use the corresponding matrix Em. In addition 

to these three conventional solutions, we can choose the optimal zero-forcing equalizer as the one 

described in Sec. 3.1. The details of the construction of this solution are omitted since they are 

analogous to the derivations in Sec. 3.1. 

The conditions for the existence of any ZFE T^fe) are described in the previous theorem. Under 

the same conditions there will exist the optimal ZFE T^pt) as well. The event that the normal 

rank of Em(z) is less than r occurs with zero probability and thus for all practical purposes we can 

assume the channel is equalizable regardless of the choice of signature points. Again, for the reasons 

of computational benefits, signature points can be chosen to be uniformly distributed on the unit 

circle [see (10)]. In the following we demonstrate the advantages of the FSAMOUR systems with 

fractional oversampling over the conventional AMOUR systems. 

4.5    Performance evaluation 

In this section we present the simulation results comparing the performance of the conventional 

AMOUR system to the FS AMOUR system with a fractional oversampling ratio. The simulation 

resuts are averaged over thirty independently chosen real random channels of order L - 4. The 

g-times oversampled channel impulse responses h$(n) were also chosen randomly, under the con- 

straint that they coinside with AMOUR channels at integers. In other words h$(qn) = hm(n). 

The channel noise was taken to be colored in order to demonstrate the difference of using optimal 

ZFEs to conventional ZFEs. Noise was modeled as an auto-regressive process of first order [11] 

i.e. AR(1) process with the cross-correlation coefficient equal to 0.8. The SNR was measured at 

the receiver as explained in Sec. 3.2. The amount of oversampling at the receiver was chosen to 

be q/r = 6/5, and the parameter ar = 6. The other parameters were chosen as in (52).  Notice 
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Figure 11: Probability of error as a function of SNR in AMOUR and FSAMOUR systems with 
oversampling ratio 6/5. 

that the advantage of this system over the one described in Sec. 3 is in the lower data rate at the 

receiver. Namely, for each 5 symbols of the input data stream sm(n) the receiver in Fig. 3 needs 

to deal with 10 symbols, while the receiver in Fig. 9 deals with only 6. This represents not only 

the reduction in complexity of the receiver, but also minimizes the additional on-chip RF noise 

resulting from fast-operating integrated circuits. 

The performance curves are shown in Fig. 11. The acronyms "SSE" and "FSE" represent the 

AMOUR system with no oversampling and the FSAMOUR system with the oversampling ratio 

6/5, while the suffices "ZF", "MMSE" and "OPT" correspond to the zero-forcing, minimum mean- 

squared error and optimal ZFE solutions respectively. The optimal ZFEs are based on optimal 

matrix inverses as explained in Sec. 3.1. Comparing these performances we conclude: 

• In this case (due to noise coloring and fractional oversampling) the optimal ZFE in both 

AMOUR and FSAMOUR systems perform significantly better than the conventional ZFE. 

This comes in contrast to some of the results in Sec. 3.2. 

• The optimal ZFEs in both systems on Fig. 11 perform almost identically to the MMSE 

solutions. As explained in Sec. 3.2 the complexity of T^pt) is reduced compared to that of 

p(mmse) &^ gQ ig ^e reqUjre(j knowledge of the signal and the noise statistics. 

• The FSAMOUR system with the oversampling ratio 6/5 performs better than the correspond- 

ing AMOUR system with no oversampling. The price to be paid is in the data rate and the 

complexity at the receiver. As expected, the FSAMOUR system with the oversampling ratio 
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6/5 is still outperformed by the FSAMOUR system with the oversampling ratio q = 2 (this 

can be assessed by comparing Fig. 11 and Fig. 7). 

5 Concluding remarks 

The recent development of A Mutually-Orthogonal Usercode-Receiver (AMOUR) for asynchronous 

or quasi-synchronous CDMA systems [3, 4] represents a major break-through in the theory of 

multiuser communications. The main advantage over some of the other methods lies in the fact 

that both the suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within 

a single user can be achieved regardless of the multipath channels. For this reason it is very easy 

to extend the AMOUR method to the case where these channels are unknown [4]. In this paper 

we proposed a modification of the traditional AMOUR system in that the received continuous- 

time signal is oversampled by an integral or a rational amount. This idea leads to the concept of 

Fractionally-Spaced AMOUR (FSAMOUR) receivers that are derived for both integral and rational 

amounts of oversampling. Their performance is compared to the corresponding performance of 

the conventional method and significant improvements are observed. An important point often 

overlooked in the design of zero-forcing channel equalizers is that sometimes they are not unique. 

We exploit this flexibility in the design of AMOUR and FSAMOUR receivers and further improve 

the performance of multiuser communication systems. 

6 Appendix 

Proof of Lemma 1. Without loss of generality we only consider r = L + 1, since the proof for 

r > L + 1 follows essentially the same lines. The polyphase components Hm^(z) of the q-iold 

oversampled channel H^-q\z) defined in (32) can be thought of as FIR filters of order L (or less). 

As a special case, note that Hmß(z) = Hm(z). Next, consider the auxiliary filters Pmik(z) as in 

(34). From (33) it follows not only that q and r are coprime, but at the same time that Q and r 

are coprime as well. For this reason the numbers 

Ik = [kQ  mod  r] 

are distinct for each 0 < fc < r — 1. As a consequence, the first r filters 

Pmjk(*) = zkQHm,k(z),   0<k<r-l 

of length L + 1 are delayed by the amounts that are all different relative to the start of blocks of 

length r. This combined with the fact that r — L+1 leads us to conclude that the entries of Em(z), 
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namely Ekti(z) denned in (35) are all given by 

e-k,l ■ 
,1LI (54) 

Here e^ are constants, rikti > 0, nkti+i > "■&,( and nk^-i < "fc,o + 1- Moreover, the index within 

the fcth row of Em(z) where the exponent nj^ increases by one is different for each of the first r 

rows and all the polyphase components Ek,i(z) for k = 0 are constant. It follows that indeed Em(z) 

can be written as (53), with Um denoting the unitary matrix corresponding to row permutations 

and Dm(z) given by 

Dm(z) = diag[zm°   zmi   ■■■   z"1*-1},   mk G N 

whose purpose is to pull out any common delay elements from each row of Em(z). V V V 

Proof of Lemma 2. Consider (53). Depending on Um, ~E,mfl{z) can be chosen as 

Em,o(2 

eo,o       eo,i        eo,2 
ei,o z ■ ei,i z ■ ei,2 
e2,o        e2,i z • e2,2 

er-i,o er_i,i er_i,2 

eo,r-i 
z • ei,r_i 
Z ■ e2,r_l 

Z ■ er_i r—1 

(55) 

From (55) it follows that 

ord{det[Em>0(z)]}<r-l. (56) 

Therefore, (55) can be rewritten using the Smith-McMillan form for the FIR case [14] 

Em,0(z) = Üo(z)Ao(z)Vo(z), (57) 

where Uo(z) and Vo(z) are unimodular and Ao(z) is diagonal with polynomials Aj(z) on the 

diagonal for 0 < i < r — 1. From (56) it follows that 

r-l 
^~Vd{Ai(z)}<r-l. (58) 

Note that some of the diagonal polynomials Aj(z) can be identically equal to zero, and that will 

result in rank{Em]o(7)} < r regardless of 7. However, if this is not the case it follows from (58) 

that by varying z the rank of Emio(z) can drop by at most r — 1. This concludes the proof. V VV 
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